- [나스미디어]2024년 11월 2025 디지털 미디어 & 마케팅 전망
- [2025년 7월] 2025 상반기 디지털 미디어 & 마케팅 결산
- [플레이디] 2025 광고·마케팅 트렌드 전망 리포트
- [2025년 5월] 2025 NPR 요약보고서
- 기아차 SOUL의 혁신적인 제품전략 -소비자의 soul을 움직이다-
- [2024년 12월] 한 장이면 고민 끝! 2025 마케팅 이슈 캘린더
- [CJ?메조미디어] 2025 타겟?리포트_50대
- 조선-중앙-동아일보의 유사성과 차별성:1면 구성과 사설의 이념성을 중심으로
- [Case Study] 디지털 미디어 광고 사례
- [인크로스]2025년 1월 미디어 이슈 리포트
A Study on the Development of Future Corporate Value Forecasting Classifier Reflecting ESG Information
자료요약
Companies above a certain size that operate globally are showing increasing commitment to ESG (environmental, social, and governance) activities. The main goal of this study is to design a model that can predict future corporate value based on ESG score data. To this end, this study compares the predictions of the basic future corporate value prediction model on which previous studies have been based and those of the future corporate value prediction model proposed herein that includes ESG ratings. For a more rigorous analysis that obtains more comprehensive results, the current study presents results using five machine learning methods: CatBoost, Extra Trees, LGBM, Random Forest, and Gradient Boost. These results indicate that models that encompass ESG data consistently outperform models that do not encompass ESG data in terms of predicting future corporate value. This paper is characterized by its use of an interdisciplinary research methodology that uniquely introduces machine learning techniques, which are rarely used for empirical analysis in the financial and accounting fields. This innovative and future-oriented research method is expected to inspire subsequent scholars in these domains and others in which machine learning techniques are not typically used.
목차
Ⅰ. Introduction
Ⅱ. Theoretical background and research question development
Ⅲ. Data
Ⅳ. Methods
Ⅴ. Results
Ⅵ. Discussion
References
Ⅱ. Theoretical background and research question development
Ⅲ. Data
Ⅳ. Methods
Ⅴ. Results
Ⅵ. Discussion
References
#Future Corporate Value#Tobin’s Q#ESG rating#Machine Learning#Classifier








